This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://yukicoder.me/problems/no/899"
#include "../memo/macro.hpp"
#include "../graph/bfs_euler_tour.cpp"
#include "../data_structure/lazysegtree.cpp"
int main() {
ll n;
cin >> n;
bfsEulerTour tour(n, 2);
REP(i, n-1) {
ll u, v;
cin >> u >> v;
tour.add_edge(u, v);
}
vector<ll> a(n);
REP(i, n) cin >> a[i];
tour.build();
lazysegtree<linear_exp> seg(n+2);
seg.build(vector<node>(n+2, node(0)));
REP(i, n) {
tour.for_each(i, 0, [&](ll u, ll v){
seg.update(u, v, PII(0, a[i]));
});
}
ll q;
cin >> q;
while(q--) {
ll x;
cin >> x;
ll ret = 0;
tour.for_each(x, 2, [&](ll u, ll v){
ret += seg.query(u, v).sum;
seg.update(u, v, PII(0, 0));
});
tour.for_each(x, 0, [&](ll u, ll v){
seg.update(u, v, PII(1, ret));
});
cout << ret << endl;
}
}
#line 1 "test/yuki899.test.cpp"
#define PROBLEM "https://yukicoder.me/problems/no/899"
#line 1 "memo/macro.hpp"
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using PII = pair<ll, ll>;
#define FOR(i, a, n) for (ll i = (ll)a; i < (ll)n; ++i)
#define REP(i, n) FOR(i, 0, n)
#define ALL(x) x.begin(), x.end()
template<typename T> void chmin(T &a, const T &b) { a = min(a, b); }
template<typename T> void chmax(T &a, const T &b) { a = max(a, b); }
struct FastIO {FastIO() { cin.tie(0); ios::sync_with_stdio(0); }}fastiofastio;
const ll INF = 1LL<<60;
#line 1 "graph/bfs_euler_tour.cpp"
// BEGIN CUT
struct bfsEulerTour {
ll n, maxd;
vector<ll> idx, tour;
vector<vector<ll>> g, p, l, r;
bfsEulerTour() {}
bfsEulerTour(ll n, ll d) : n(n), maxd(d), idx(n+d, -1), g(n+d), p(d+1, vector<ll>(n+d, -1)), l(d+1, vector<ll>(n+d, -1)), r(d+1, vector<ll>(n+d, -1)) {}
void add_edge(ll a, ll b) {
g[a].push_back(b);
g[b].push_back(a);
}
void build(ll root=0) {
REP(i, maxd-1) {
g[n+i].push_back(n+i+1);
g[n+i+1].push_back(n+i);
}
g[n].push_back(root);
g[root].push_back(n);
queue<ll> que;
que.push(n+maxd-1);
idx[n+maxd-1] = tour.size();
tour.push_back(n+maxd-1);
while(que.size()) {
ll v = que.front(); que.pop();
for(auto to: g[v]) {
if(idx[to] != -1) continue;
que.push(to);
idx[to] = tour.size();
tour.push_back(to);
p[0][to] = to;
FOR(i, 1, maxd+1) p[i][to] = p[i-1][v];
REP(i, maxd+1) {
if(p[i][to] == -1) continue;
if(l[i][p[i][to]] == -1) l[i][p[i][to]] = idx[to];
r[i][p[i][to]] = idx[to]+1;
}
}
}
}
// WMに乗せるとupdateなしオンラインクエリでdが大きい場合でもいけるらしい
// 頂点vからの距離がd以下の頂点に対応する区間を列挙 O(d)
void for_each(ll v, ll d, function<void(ll,ll)> f) {
for(ll i=d; i>=0; --i) {
if(p[i][v] == -1) continue;
if(d-1>=i && l[d-1-i][p[i][v]]!=-1 && r[d-1-i][p[i][v]]!=-1) {
f(l[d-1-i][p[i][v]], r[d-1-i][p[i][v]]);
}
if(l[d-i][p[i][v]]!=-1 && r[d-i][p[i][v]]!=-1) {
f(l[d-i][p[i][v]], r[d-i][p[i][v]]);
}
}
}
};
// END CUT
#line 1 "data_structure/lazysegtree.cpp"
// BEGIN CUT
template <typename Monoid>
struct lazysegtree {
using T = typename Monoid::T;
using E = typename Monoid::E;
int n, height;
vector<T> dat;
vector<E> lazy;
lazysegtree() {}
lazysegtree(int n_) {
n = 1, height = 0;
while(n <= n_) { n *= 2; height++; }
dat.assign(n*2, Monoid::dt());
lazy.assign(n*2, Monoid::de());
}
void build(vector<T> v) {
REP(i, v.size()) dat[i+n] = v[i];
for(int i=n-1; i>0; --i) dat[i] = Monoid::f(dat[i*2], dat[i*2+1]);
}
inline T reflect(int k) { return lazy[k]==Monoid::de()?dat[k]:Monoid::g(dat[k], lazy[k]); }
inline void eval(int k) {
if(lazy[k] == Monoid::de()) return;
lazy[2*k] = Monoid::h(lazy[k*2], lazy[k]);
lazy[2*k+1] = Monoid::h(lazy[k*2+1], lazy[k]);
dat[k] = reflect(k);
lazy[k] = Monoid::de();
}
inline void thrust(int k) { for(int i=height;i;--i) eval(k>>i); }
inline void recalc(int k) { while(k>>=1) dat[k] = Monoid::f(reflect(k*2), reflect(k*2+1)); }
void update(int a, int b, E x) {
if(a >= b) return;
thrust(a+=n);
thrust(b+=n-1);
for(int l=a, r=b+1; l<r; l>>=1,r>>=1) {
if(l&1) lazy[l] = Monoid::h(lazy[l], x), ++l;
if(r&1) --r, lazy[r] = Monoid::h(lazy[r], x);
}
recalc(a);
recalc(b);
}
T query(int a, int b) {
if(a >= b) return Monoid::dt();
thrust(a+=n);
thrust(b+=n-1);
T vl=Monoid::dt(), vr=Monoid::dt();
for(int l=a, r=b+1; l<r; l>>=1,r>>=1) {
if(l&1) vl=Monoid::f(vl, reflect(l++));
if(r&1) vr=Monoid::f(reflect(--r), vr);
}
return Monoid::f(vl, vr);
}
friend ostream &operator <<(ostream& out,const lazysegtree<Monoid>& seg) {
out << "---------------------" << endl;
int cnt = 1;
for(int i=1; i<=seg.n; i*=2) {
REP(j, i) {
out << "(" << seg.dat[cnt] << "," << seg.lazy[cnt] << ") ";
cnt++;
}
out << endl;
}
out << "---------------------" << endl;
return out;
}
};
struct node {
ll sum, max, min, len;
node() : sum(0), max(-INF), min(INF), len(0) {}
node(ll a) : sum(a), max(a), min(a), len(1) {}
};
struct linear_exp {
using T = node;
using E = PII;
static T dt() { return node(); }
static constexpr E de() { return PII(1, 0); }
static T f(const T &a, const T &b) {
node ret;
ret.sum = a.sum + b.sum;
ret.min = min(a.min, b.min);
ret.max = max(a.max, b.max);
ret.len = a.len + b.len;
return ret;
}
static T g(const T &a, const E &b) {
node ret;
ret.sum = b.first*a.sum+b.second*a.len;
ret.min = b.first*a.min+b.second;
ret.max = b.first*a.max+b.second;
ret.len = a.len;
return ret;
}
static E h(const E &a, const E &b) {
return PII(b.first*a.first, b.first*a.second+b.second);
}
};
// END CUT
#line 5 "test/yuki899.test.cpp"
int main() {
ll n;
cin >> n;
bfsEulerTour tour(n, 2);
REP(i, n-1) {
ll u, v;
cin >> u >> v;
tour.add_edge(u, v);
}
vector<ll> a(n);
REP(i, n) cin >> a[i];
tour.build();
lazysegtree<linear_exp> seg(n+2);
seg.build(vector<node>(n+2, node(0)));
REP(i, n) {
tour.for_each(i, 0, [&](ll u, ll v){
seg.update(u, v, PII(0, a[i]));
});
}
ll q;
cin >> q;
while(q--) {
ll x;
cin >> x;
ll ret = 0;
tour.for_each(x, 2, [&](ll u, ll v){
ret += seg.query(u, v).sum;
seg.update(u, v, PII(0, 0));
});
tour.for_each(x, 0, [&](ll u, ll v){
seg.update(u, v, PII(1, ret));
});
cout << ret << endl;
}
}