This documentation is automatically generated by online-judge-tools/verification-helper
// BEGIN CUT
template <typename Monoid>
struct lazysegtree {
using T = typename Monoid::T;
using E = typename Monoid::E;
int n, height;
vector<T> dat;
vector<E> lazy;
lazysegtree() {}
lazysegtree(int n_) {
n = 1, height = 0;
while(n <= n_) { n *= 2; height++; }
dat.assign(n*2, Monoid::dt());
lazy.assign(n*2, Monoid::de());
}
void build(vector<T> v) {
REP(i, v.size()) dat[i+n] = v[i];
for(int i=n-1; i>0; --i) dat[i] = Monoid::f(dat[i*2], dat[i*2+1]);
}
inline T reflect(int k) { return lazy[k]==Monoid::de()?dat[k]:Monoid::g(dat[k], lazy[k]); }
inline void eval(int k) {
if(lazy[k] == Monoid::de()) return;
lazy[2*k] = Monoid::h(lazy[k*2], lazy[k]);
lazy[2*k+1] = Monoid::h(lazy[k*2+1], lazy[k]);
dat[k] = reflect(k);
lazy[k] = Monoid::de();
}
inline void thrust(int k) { for(int i=height;i;--i) eval(k>>i); }
inline void recalc(int k) { while(k>>=1) dat[k] = Monoid::f(reflect(k*2), reflect(k*2+1)); }
void update(int a, int b, E x) {
if(a >= b) return;
thrust(a+=n);
thrust(b+=n-1);
for(int l=a, r=b+1; l<r; l>>=1,r>>=1) {
if(l&1) lazy[l] = Monoid::h(lazy[l], x), ++l;
if(r&1) --r, lazy[r] = Monoid::h(lazy[r], x);
}
recalc(a);
recalc(b);
}
T query(int a, int b) {
if(a >= b) return Monoid::dt();
thrust(a+=n);
thrust(b+=n-1);
T vl=Monoid::dt(), vr=Monoid::dt();
for(int l=a, r=b+1; l<r; l>>=1,r>>=1) {
if(l&1) vl=Monoid::f(vl, reflect(l++));
if(r&1) vr=Monoid::f(reflect(--r), vr);
}
return Monoid::f(vl, vr);
}
friend ostream &operator <<(ostream& out,const lazysegtree<Monoid>& seg) {
out << "---------------------" << endl;
int cnt = 1;
for(int i=1; i<=seg.n; i*=2) {
REP(j, i) {
out << "(" << seg.dat[cnt] << "," << seg.lazy[cnt] << ") ";
cnt++;
}
out << endl;
}
out << "---------------------" << endl;
return out;
}
};
struct node {
ll sum, max, min, len;
node() : sum(0), max(-INF), min(INF), len(0) {}
node(ll a) : sum(a), max(a), min(a), len(1) {}
};
struct linear_exp {
using T = node;
using E = PII;
static T dt() { return node(); }
static constexpr E de() { return PII(1, 0); }
static T f(const T &a, const T &b) {
node ret;
ret.sum = a.sum + b.sum;
ret.min = min(a.min, b.min);
ret.max = max(a.max, b.max);
ret.len = a.len + b.len;
return ret;
}
static T g(const T &a, const E &b) {
node ret;
ret.sum = b.first*a.sum+b.second*a.len;
ret.min = b.first*a.min+b.second;
ret.max = b.first*a.max+b.second;
ret.len = a.len;
return ret;
}
static E h(const E &a, const E &b) {
return PII(b.first*a.first, b.first*a.second+b.second);
}
};
// END CUT
#line 1 "data_structure/lazysegtree.cpp"
// BEGIN CUT
template <typename Monoid>
struct lazysegtree {
using T = typename Monoid::T;
using E = typename Monoid::E;
int n, height;
vector<T> dat;
vector<E> lazy;
lazysegtree() {}
lazysegtree(int n_) {
n = 1, height = 0;
while(n <= n_) { n *= 2; height++; }
dat.assign(n*2, Monoid::dt());
lazy.assign(n*2, Monoid::de());
}
void build(vector<T> v) {
REP(i, v.size()) dat[i+n] = v[i];
for(int i=n-1; i>0; --i) dat[i] = Monoid::f(dat[i*2], dat[i*2+1]);
}
inline T reflect(int k) { return lazy[k]==Monoid::de()?dat[k]:Monoid::g(dat[k], lazy[k]); }
inline void eval(int k) {
if(lazy[k] == Monoid::de()) return;
lazy[2*k] = Monoid::h(lazy[k*2], lazy[k]);
lazy[2*k+1] = Monoid::h(lazy[k*2+1], lazy[k]);
dat[k] = reflect(k);
lazy[k] = Monoid::de();
}
inline void thrust(int k) { for(int i=height;i;--i) eval(k>>i); }
inline void recalc(int k) { while(k>>=1) dat[k] = Monoid::f(reflect(k*2), reflect(k*2+1)); }
void update(int a, int b, E x) {
if(a >= b) return;
thrust(a+=n);
thrust(b+=n-1);
for(int l=a, r=b+1; l<r; l>>=1,r>>=1) {
if(l&1) lazy[l] = Monoid::h(lazy[l], x), ++l;
if(r&1) --r, lazy[r] = Monoid::h(lazy[r], x);
}
recalc(a);
recalc(b);
}
T query(int a, int b) {
if(a >= b) return Monoid::dt();
thrust(a+=n);
thrust(b+=n-1);
T vl=Monoid::dt(), vr=Monoid::dt();
for(int l=a, r=b+1; l<r; l>>=1,r>>=1) {
if(l&1) vl=Monoid::f(vl, reflect(l++));
if(r&1) vr=Monoid::f(reflect(--r), vr);
}
return Monoid::f(vl, vr);
}
friend ostream &operator <<(ostream& out,const lazysegtree<Monoid>& seg) {
out << "---------------------" << endl;
int cnt = 1;
for(int i=1; i<=seg.n; i*=2) {
REP(j, i) {
out << "(" << seg.dat[cnt] << "," << seg.lazy[cnt] << ") ";
cnt++;
}
out << endl;
}
out << "---------------------" << endl;
return out;
}
};
struct node {
ll sum, max, min, len;
node() : sum(0), max(-INF), min(INF), len(0) {}
node(ll a) : sum(a), max(a), min(a), len(1) {}
};
struct linear_exp {
using T = node;
using E = PII;
static T dt() { return node(); }
static constexpr E de() { return PII(1, 0); }
static T f(const T &a, const T &b) {
node ret;
ret.sum = a.sum + b.sum;
ret.min = min(a.min, b.min);
ret.max = max(a.max, b.max);
ret.len = a.len + b.len;
return ret;
}
static T g(const T &a, const E &b) {
node ret;
ret.sum = b.first*a.sum+b.second*a.len;
ret.min = b.first*a.min+b.second;
ret.max = b.first*a.max+b.second;
ret.len = a.len;
return ret;
}
static E h(const E &a, const E &b) {
return PII(b.first*a.first, b.first*a.second+b.second);
}
};
// END CUT