This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=2996"
#include "../memo/macro.hpp"
#include "../math/FFT.cpp"
#include "../math/modint.cpp"
using mint = modint<65537>;
signed main(void) {
ll t;
cin >> t;
while(t--) {
ll n;
mint k;
cin >> n >> k;
vector<mint> a0(n);
REP(i, n) cin >> a0[n-1-i];
// a[i] を i! で割る
mint inv = 1;
FOR(i, 1, n) {
inv *= mint(i).inv();
a0[i] *= inv;
}
// b[i] = (-k)^i / i!
vector<mint> b0(n);
b0[0] = 1;
FOR(i, 1, n) b0[i] = b0[i-1] * (65537-k) * mint(i).inv();
// a と b の畳み込みに i! を掛ける
vector<int> a(n), b(n);
REP(i, n) a[i] = a0[i].x, b[i] = b0[i].x;
auto conv = fft::multiply(a, b);
mint frac = 1;
REP(i, n) {
if(i > 0) frac *= i;
cout << conv[i] * frac << (i==n-1?'\n':' ');
}
}
cout << flush;
return 0;
}
#line 1 "test/aoj2996_0.test.cpp"
#define PROBLEM "http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=2996"
#line 1 "memo/macro.hpp"
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using PII = pair<ll, ll>;
#define FOR(i, a, n) for (ll i = (ll)a; i < (ll)n; ++i)
#define REP(i, n) FOR(i, 0, n)
#define ALL(x) x.begin(), x.end()
template<typename T> void chmin(T &a, const T &b) { a = min(a, b); }
template<typename T> void chmax(T &a, const T &b) { a = max(a, b); }
struct FastIO {FastIO() { cin.tie(0); ios::sync_with_stdio(0); }}fastiofastio;
const ll INF = 1LL<<60;
#line 1 "math/FFT.cpp"
// BEGIN CUT
namespace fft {
using dbl = double;
struct num {
dbl x, y;
num() { x = y = 0; }
num(dbl x, dbl y) : x(x), y(y) { }
};
inline num operator+(num a, num b) { return num(a.x + b.x, a.y + b.y); }
inline num operator-(num a, num b) { return num(a.x - b.x, a.y - b.y); }
inline num operator*(num a, num b) { return num(a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x); }
inline num conj(num a) { return num(a.x, -a.y); }
int base = 1;
vector<num> roots = {{0, 0}, {1, 0}};
vector<int> rev = {0, 1};
const dbl PI = acosl(-1.0);
void ensure_base(int nbase) {
if (nbase <= base) return;
rev.resize(1 << nbase);
for (int i = 0; i < (1 << nbase); i++) {
rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1));
}
roots.resize(1 << nbase);
while (base < nbase) {
dbl angle = 2 * PI / (1 << (base + 1));
for (int i = 1 << (base - 1); i < (1 << base); i++) {
roots[i << 1] = roots[i];
dbl angle_i = angle * (2 * i + 1 - (1 << base));
roots[(i << 1) + 1] = num(cos(angle_i), sin(angle_i));
}
base++;
}
}
void fft(vector<num> &a, int n = -1) {
if (n == -1) n = a.size();
assert((n & (n - 1)) == 0);
int zeros = __builtin_ctz(n);
ensure_base(zeros);
int shift = base - zeros;
for (int i = 0; i < n; i++) {
if (i < (rev[i] >> shift)) {
swap(a[i], a[rev[i] >> shift]);
}
}
for (int k=1; k<n; k <<= 1) {
for (int i=0; i<n; i += 2*k) {
for (int j=0; j<k; j++) {
num z = a[i+j+k] * roots[j+k];
a[i+j+k] = a[i+j] - z;
a[i+j] = a[i+j] + z;
}
}
}
}
vector<num> fa, fb;
vector<long long> multiply(vector<int> &a, vector<int> &b) {
int need = a.size() + b.size() - 1;
int nbase = 0;
while ((1 << nbase) < need) nbase++;
ensure_base(nbase);
int sz = 1 << nbase;
if (sz > (int) fa.size()) fa.resize(sz);
for (int i = 0; i < sz; i++) {
int x = (i < (int) a.size() ? a[i] : 0);
int y = (i < (int) b.size() ? b[i] : 0);
fa[i] = num(x, y);
}
fft(fa, sz);
num r(0, -0.25 / sz);
for (int i = 0; i <= (sz >> 1); i++) {
int j = (sz - i) & (sz - 1);
num z = (fa[j] * fa[j] - conj(fa[i] * fa[i])) * r;
if (i != j) fa[j] = (fa[i] * fa[i] - conj(fa[j] * fa[j])) * r;
fa[i] = z;
}
fft(fa, sz);
vector<long long> res(need);
for (int i = 0; i < need; i++) res[i] = fa[i].x + 0.5;
return res;
}
template<int m>
vector<int> multiply_mod(vector<int> &a, vector<int> &b) {
int need = a.size() + b.size() - 1;
int nbase = 0;
while ((1 << nbase) < need) nbase++;
ensure_base(nbase);
int sz = 1 << nbase;
if (sz > (int) fa.size()) {
fa.resize(sz);
}
for (int i = 0; i < (int) a.size(); i++) {
int x = (a[i] % m + m) % m;
fa[i] = num(x & ((1 << 15) - 1), x >> 15);
}
fill(fa.begin() + a.size(), fa.begin() + sz, num {0, 0});
fft(fa, sz);
if (sz > (int) fb.size()) {
fb.resize(sz);
}
for (int i = 0; i < (int) b.size(); i++) {
int x = (b[i] % m + m) % m;
fb[i] = num(x & ((1 << 15) - 1), x >> 15);
}
fill(fb.begin() + b.size(), fb.begin() + sz, num {0, 0});
fft(fb, sz);
dbl ratio = 0.25 / sz;
num r2(0, -1);
num r3(ratio, 0);
num r4(0, -ratio);
num r5(0, 1);
for (int i = 0; i <= (sz >> 1); i++) {
int j = (sz - i) & (sz - 1);
num a1 = (fa[i] + conj(fa[j]));
num a2 = (fa[i] - conj(fa[j])) * r2;
num b1 = (fb[i] + conj(fb[j])) * r3;
num b2 = (fb[i] - conj(fb[j])) * r4;
if (i != j) {
num c1 = (fa[j] + conj(fa[i]));
num c2 = (fa[j] - conj(fa[i])) * r2;
num d1 = (fb[j] + conj(fb[i])) * r3;
num d2 = (fb[j] - conj(fb[i])) * r4;
fa[i] = c1 * d1 + c2 * d2 * r5;
fb[i] = c1 * d2 + c2 * d1;
}
fa[j] = a1 * b1 + a2 * b2 * r5;
fb[j] = a1 * b2 + a2 * b1;
}
fft(fa, sz);
fft(fb, sz);
vector<int> res(need);
for (int i = 0; i < need; i++) {
long long aa = fa[i].x + 0.5;
long long bb = fb[i].x + 0.5;
long long cc = fa[i].y + 0.5;
res[i] = (aa + ((bb % m) << 15) + ((cc % m) << 30)) % m;
}
return res;
}
// fft::multiply uses dbl, outputs vector<long long> of rounded values
// fft::multiply_mod might work for res.size() up to 2^21
// typedef long double dbl; => up to 2^25 (but takes a lot of memory)
};
// END CUT
#line 1 "math/modint.cpp"
// BEGIN CUT
template<ll MOD>
struct modint {
ll x;
modint(): x(0) {}
modint(ll y) : x(y>=0 ? y%MOD : y%MOD+MOD) {}
static constexpr ll mod() { return MOD; }
// e乗
modint pow(ll e) {
ll a = 1, p = x;
while(e > 0) {
if(e%2 == 0) {p = (p*p) % MOD; e /= 2;}
else {a = (a*p) % MOD; e--;}
}
return modint(a);
}
modint inv() const {
ll a=x, b=MOD, u=1, y=1, v=0, z=0;
while(a) {
ll q = b/a;
swap(z -= q*u, u);
swap(y -= q*v, v);
swap(b -= q*a, a);
}
return z;
}
// Comparators
bool operator <(modint b) { return x < b.x; }
bool operator >(modint b) { return x > b.x; }
bool operator<=(modint b) { return x <= b.x; }
bool operator>=(modint b) { return x >= b.x; }
bool operator!=(modint b) { return x != b.x; }
bool operator==(modint b) { return x == b.x; }
// Basic Operations
modint operator+(modint r) const { return modint(*this) += r; }
modint operator-(modint r) const { return modint(*this) -= r; }
modint operator*(modint r) const { return modint(*this) *= r; }
modint operator/(modint r) const { return modint(*this) /= r; }
modint &operator+=(modint r) {
if((x += r.x) >= MOD) x -= MOD;
return *this;
}
modint &operator-=(modint r) {
if((x -= r.x) < 0) x += MOD;
return *this;
}
modint &operator*=(modint r) {
#if !defined(_WIN32) || defined(_WIN64)
x = (ll)x * r.x % MOD; return *this;
#endif
unsigned long long y = (unsigned long long)x * r.x;
unsigned xh = (unsigned) (y >> 32), xl = (unsigned) y, d, m;
asm(
"divl %4; \n\t"
: "=a" (d), "=d" (m)
: "d" (xh), "a" (xl), "r" (MOD)
);
x = m;
return *this;
}
modint &operator/=(modint r) { return *this *= r.inv(); }
// increment, decrement
modint operator++() { x++; return *this; }
modint operator++(signed) { modint t = *this; x++; return t; }
modint operator--() { x--; return *this; }
modint operator--(signed) { modint t = *this; x--; return t; }
// 平方剰余のうち一つを返す なければ-1
friend modint sqrt(modint a) {
if(a == 0) return 0;
ll q = MOD-1, s = 0;
while((q&1)==0) q>>=1, s++;
modint z=2;
while(1) {
if(z.pow((MOD-1)/2) == MOD-1) break;
z++;
}
modint c = z.pow(q), r = a.pow((q+1)/2), t = a.pow(q);
ll m = s;
while(t.x>1) {
modint tp=t;
ll k=-1;
FOR(i, 1, m) {
tp *= tp;
if(tp == 1) { k=i; break; }
}
if(k==-1) return -1;
modint cp=c;
REP(i, m-k-1) cp *= cp;
c = cp*cp, t = c*t, r = cp*r, m = k;
}
return r.x;
}
template<class T>
friend modint operator*(T l, modint r) { return modint(l) *= r; }
template<class T>
friend modint operator+(T l, modint r) { return modint(l) += r; }
template<class T>
friend modint operator-(T l, modint r) { return modint(l) -= r; }
template<class T>
friend modint operator/(T l, modint r) { return modint(l) /= r; }
template<class T>
friend bool operator==(T l, modint r) { return modint(l) == r; }
template<class T>
friend bool operator!=(T l, modint r) { return modint(l) != r; }
// Input/Output
friend ostream &operator<<(ostream& os, modint a) { return os << a.x; }
friend istream &operator>>(istream& is, modint &a) {
is >> a.x;
a.x = ((a.x%MOD)+MOD)%MOD;
return is;
}
friend string to_frac(modint v) {
static map<ll, PII> mp;
if(mp.empty()) {
mp[0] = mp[MOD] = {0, 1};
FOR(i, 2, 1001) FOR(j, 1, i) if(__gcd(i, j) == 1) {
mp[(modint(i) / j).x] = {i, j};
}
}
auto itr = mp.lower_bound(v.x);
if(itr != mp.begin() && v.x - prev(itr)->first < itr->first - v.x) --itr;
string ret = to_string(itr->second.first + itr->second.second * ((int)v.x - itr->first));
if(itr->second.second > 1) {
ret += '/';
ret += to_string(itr->second.second);
}
return ret;
}
};
// END CUT
#line 5 "test/aoj2996_0.test.cpp"
using mint = modint<65537>;
signed main(void) {
ll t;
cin >> t;
while(t--) {
ll n;
mint k;
cin >> n >> k;
vector<mint> a0(n);
REP(i, n) cin >> a0[n-1-i];
// a[i] を i! で割る
mint inv = 1;
FOR(i, 1, n) {
inv *= mint(i).inv();
a0[i] *= inv;
}
// b[i] = (-k)^i / i!
vector<mint> b0(n);
b0[0] = 1;
FOR(i, 1, n) b0[i] = b0[i-1] * (65537-k) * mint(i).inv();
// a と b の畳み込みに i! を掛ける
vector<int> a(n), b(n);
REP(i, n) a[i] = a0[i].x, b[i] = b0[i].x;
auto conv = fft::multiply(a, b);
mint frac = 1;
REP(i, n) {
if(i > 0) frac *= i;
cout << conv[i] * frac << (i==n-1?'\n':' ');
}
}
cout << flush;
return 0;
}