ferin blog

Sep 20, 2018 - 2 minute read - 競技プログラミング

ACPCday2 D: Gridgedge

問題ページ

最短経路のコストを求めるにはdijkstra法を使えばよい。dijkstra法を行うときに最短経路の組み合わせ数を持てば組み合わせ数も容易に求めることができる。移動方法が上下左右のみに比べて4通り増えているがこれは特に問題にはならない。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
#include <bits/stdc++.h>

using namespace std;
using ll = long long;
#define int ll
using PII = pair<int, int>;
template <typename T> using V = vector<T>;
template <typename T> using VV = vector<V<T>>;
template <typename T> using VVV = vector<VV<T>>;

#define FOR(i, a, n) for (ll i = (ll)a; i < (ll)n; ++i)
#define REP(i, n) FOR(i, 0, n)
#define ALL(x) x.begin(), x.end()
#define PB push_back

const ll INF = (1LL<<60);
const int MOD = 1000000007;

template <typename T> T &chmin(T &a, const T &b) { return a = min(a, b); }
template <typename T> T &chmax(T &a, const T &b) { return a = max(a, b); }
template <typename T> bool IN(T a, T b, T x) { return a<=x&&x<b; }
template<typename T> T ceil(T a, T b) { return a/b + !!(a%b); }
template<class S,class T>
ostream &operator <<(ostream& out,const pair<S,T>& a){
  out<<'('<<a.first<<','<<a.second<<')';
  return out;
}
template<class T>
ostream &operator <<(ostream& out,const vector<T>& a){
  out<<'[';
  REP(i, a.size()) {out<<a[i];if(i!=a.size()-1)out<<',';}
  out<<']';
  return out;
}

int dx[] = {0, 1, 0, -1}, dy[] = {1, 0, -1, 0};

PII d[510][510];
signed main(void)
{
  cin.tie(0);
  ios::sync_with_stdio(false);

  int h, w, sy, sx, gy, gx;
  cin >> h >> w >> sy >> sx >> gy >> gx;

  REP(i, h) REP(j, w) d[i][j] = {INF, 0};
  d[sy][sx] = {0, 1};
  priority_queue<V<int>, VV<int>, greater<V<int>>> que;
  que.push({0, sy, sx});

  while(que.size()) {
    V<int> v = que.top(); que.pop();
    if(d[v[1]][v[2]].first < v[0]) continue;
    REP(i, 4) {
      int ny = v[1] + dy[i], nx = v[2] + dx[i];
      if(!IN(0LL,h,ny) || !IN(0LL,w,nx)) continue;
      if(d[ny][nx].first > d[v[1]][v[2]].first + 1) {
        d[ny][nx] = {d[v[1]][v[2]].first+1, d[v[1]][v[2]].second};
        que.push({d[ny][nx].first, ny, nx});
      } else if(d[ny][nx].first == d[v[1]][v[2]].first + 1) {
        (d[ny][nx].second += d[v[1]][v[2]].second) %= MOD;
      }
    }
    int ny = v[1], nx = 0;
    if(d[ny][nx].first > d[v[1]][v[2]].first + 1) {
      d[ny][nx] = {d[v[1]][v[2]].first+1, d[v[1]][v[2]].second};
      que.push({d[ny][nx].first, ny, nx});
    } else if(d[ny][nx].first == d[v[1]][v[2]].first + 1) {
      (d[ny][nx].second += d[v[1]][v[2]].second) %= MOD;
    }
    ny = v[1], nx = w-1;
    if(d[ny][nx].first > d[v[1]][v[2]].first + 1) {
      d[ny][nx] = {d[v[1]][v[2]].first+1, d[v[1]][v[2]].second};
      que.push({d[ny][nx].first, ny, nx});
    } else if(d[ny][nx].first == d[v[1]][v[2]].first + 1) {
      (d[ny][nx].second += d[v[1]][v[2]].second) %= MOD;
    }
    ny = 0, nx = v[2];
    if(d[ny][nx].first > d[v[1]][v[2]].first + 1) {
      d[ny][nx] = {d[v[1]][v[2]].first+1, d[v[1]][v[2]].second};
      que.push({d[ny][nx].first, ny, nx});
    } else if(d[ny][nx].first == d[v[1]][v[2]].first + 1) {
      (d[ny][nx].second += d[v[1]][v[2]].second) %= MOD;
    }
    ny = h-1, nx = v[2];
    if(d[ny][nx].first > d[v[1]][v[2]].first + 1) {
      d[ny][nx] = {d[v[1]][v[2]].first+1, d[v[1]][v[2]].second};
      que.push({d[ny][nx].first, ny, nx});
    } else if(d[ny][nx].first == d[v[1]][v[2]].first + 1) {
      (d[ny][nx].second += d[v[1]][v[2]].second) %= MOD;
    }
  }

  cout << d[gy][gx].first << " " << d[gy][gx].second << endl;

  return 0;
}